GENDEXHAND: GENERATIVE SIMULATION FOR DEX-
TEROUS HANDS

Feng Chen*'?, Zhuxiu Xu*?3,

Tianzhe Chu'2, Xunzhe Zhou'?, Li Sun', Zewen Wu',

Shenghua Gao'?, Zhongyu Li*, Yanchao Yang®'?2, Yi Mat'-?

I'The University of Hong Kong, 2Transcengram, *Shanghai Jiao Tong University,
4The Chinese University of Hong Kong
cf24@connect.hku.hk,mayi@hku.hk

ABSTRACT

Data scarcity remains a fundamental bottleneck for embodied intelligence. Ex-
isting approaches use large language models (LLMs) to automate gripper-based
simulation generation, but they transfer poorly to dexterous manipulation, which
demands more specialized environment design. Meanwhile, dexterous manip-
ulation tasks are inherently more difficult due to their higher degrees of free-
dom. Massively generating feasible and trainable dexterous hand tasks remains
an open challenge. To this end, we present GenDexHand, a generative simula-
tion pipeline that autonomously produces diverse robotic tasks and environments
for dexterous manipulation. GenDexHand introduces a closed-loop refinement
process that adjusts object placements and scales based on vision-language model
(VLM) feedback, substantially improving the average quality of generated envi-
ronments. Each task is further decomposed into sub-tasks to enable sequential
reinforcement learning, reducing training time and increasing success rates. Our
work provides a viable path toward scalable training of diverse dexterous hand be-
haviors in embodied intelligence by offering a simulation-based solution to syn-
thetic data generation. Our website: https://winniechen2002.github.
io/GenDexHand/.

1 INTRODUCTION

A long-term goal of artificial general intelligence lies in the development of embodied agents capable
of interacting with the real world under autonomous control. Robot learning at scale is particularly
promising, as it holds the potential to endow agents with the breadth of skills and robustness nec-
essary for complex real-world deployment (Intelligence et al., 2025; Black et al., 2024; Liu et al.,
2025). Large-scale, high-quality data emerges as a cornerstone for effective robot learning, partic-
ularly in manipulation, where diverse datasets drive improvements in policy robustness and gener-
alization (Torne et al., 2024; Lin et al., 2025; Ai et al., 2025). However, constructing complex and
diverse simulation environments or collecting data with real-world robotic platforms is both costly
and technically challenging, particularly in the case of dexterous hand manipulation tasks (Chen
et al., 2022; Lin et al., 2024b). In parallel, foundation models (Anthropic, 2025; OpenAl, 2025;
Zhuo et al., 2025; Team, 2023) demonstrate strong capabilities in generating formalized code (Jain
et al., 2024; Jimenez et al., 2023), making the controllable synthesis of simulation environments
through code generation a promising approach to reducing construction costs. Building on the ca-
pability of foundation models, prior studies have made initial progress in generative simulation for
robotics, particularly in domains such as robotic grippers and locomotion (Wang et al., 2023; 2024a).

RoboGen (Wang et al., 2023) leverages foundation models to generate diverse tasks, but its environ-
ments remain confined to gripper manipulation and locomotion. GenSim (Wang et al., 2024a) and

“Denote equal contributions.
1 .
Corresponding authors.

https://winniechen2002.github.io/GenDexHand/
https://winniechen2002.github.io/GenDexHand/

— Diverse Dexterous Manipulation Environment —

@

* LLM
* MLLM

—

Figure 1: A showcase of 15 diverse and realistic task scenes automatically generated by GenDex-
Hand.

GenSim?2 (Hua et al., 2024) narrow the focus further to simpler manipulation regimes—suction and
parallel-jaw gripping—with GenSim?2 additionally demonstrating sim-to-real transfer. Yet across
these approaches, a consistent gap persists: none address the generation of dexterous hand tasks.
This omission raises a central research question: why has the generation of dexterous hand tasks
been systematically avoided?

Dexterous hands, by virtue of their anatomical structure, possess the capability to execute com-
plex tasks and exhibit greater generalization in manipulation compared to grippers or suction grip-
pers (Ma & Dollar, 2011). However, this potential comes with substantial challenges. To accomplish
intricate tasks, dexterous hands require precise coordination among multiple fingers, and achieving
such coordinated control has long been recognized as one of the primary difficulties in distinguish-
ing dexterous hand manipulation from gripper or suction-based manipulation. A further source of
difficulty arises from the high degrees of freedom (DoFs) inherent to dexterous hands. This substan-
tial increase in controllable dimensions expands the exploration space in reinforcement learning and
motion planning, necessitating more precise and fine-grained guidance for effective policy learning.
Consequently, imposing constraints or structure on the exploration space is critical for improving
both the accuracy and efficiency of learning complex dexterous-hand policies.

In this work, we introduce GenDexHand, a generative agent for producing dexterous hand simula-
tion data and corresponding control policies. The pipeline is structured into three stages: (i) task
proposal and environment generation, (ii) multimodal large language model refinement, and (iii)
policy generation. In the first stage, the system leverages our robotic asset library and object set to
propose feasible tasks and synthesize the corresponding scene configurations, objects, and guidance
components such as reward functions or goal poses. In the second stage, the generated environments
are iteratively refined with the assistance of multimodal large language models to ensure semantic
coherence and physical plausibility. Finally, in the third stage, an LLM determines whether a given
task should be addressed through motion planning or reinforcement learning; for reinforcement
learning, it specifies which finger joints are required, whereas for motion planning, it identifies the
appropriate hand position and joint configuration.

To further address the intrinsic difficulty of dexterous hand learning, we decompose long-horizon
tasks into a sequence of shorter-horizon subtasks and introduce constraints on the action space for
specific task categories. For example, in object rotation tasks, the wrist joint is fixed at its initial pose,
thereby reducing the effective action dimension and focusing exploration on finger coordination.
This structured generation and refinement process enables the creation of high-quality simulation
environments and facilitates the learning of effective policies for dexterous manipulation.

Our experiments demonstrate that GenDexHand is capable of robustly generating a diverse set of
dexterous hand manipulation tasks (see Figure 1). Compared to directly generating scenes and pol-
icy guidance in a single step, our iterative refinement procedure yields policies with an average im-
provement of 53.4% on the target tasks. The datasets produced by GenDexHand also exhibit greater
diversity than existing dexterous hand datasets, encompassing a broader range of long-horizon and
complex tasks.

In summary, our work takes a step toward transforming the latent behavioral knowledge embedded in
foundation models into dexterous hand data within simulators. By doing so, GenDexHand not only
expands the diversity of available dexterous hand data but also lays the groundwork for scaling up
simulation-driven training. In contrast to prior generative simulation approaches, our contributions
can be summarized as follows:

* We introduce GenDexHand, the first generative pipeline specifically targeting dexterous hand
manipulation, a domain largely overlooked in prior generative simulation work.

* Our framework employs a generator—verifier refinement process, where scenes are rendered, ana-
lyzed by multimodal LLMs, and iteratively corrected to ensure semantic plausibility and physical
consistency.

* We design policy learning strategies tailored for dexterous hands, including degree-of-freedom
constraints, motion planning integration, and subtask decomposition, which together enable a
53.4% average improvement in task success rate over existing baselines.

2 RELATED WORKS

2.1 FOUNDATION MODELS FOR ROBOTICS LEARNING

With the rapid advancement of language, vision, and multimodal models (OpenAl, 2023; Zhang
et al., 2023)—such as GPT-4o0 (OpenAl, 2024), GPT-5 (OpenAl, 2025), Claude 4.0 (Anthropic,
2025), and Gemini 2.5 Pro (Team, 2023; Comanici et al., 2025)—remarkable progress has been
achieved in formal code generation (Zhuo et al., 2025; Paul et al., 2024), spatial reasoning (Rajabi &
Kosecka, 2024; Stogiannidis et al., 2025), visual understanding (Zhu et al., 2024; Zhao et al., 2024),
and generalization capabilities in recent years. In our work, such foundation models play a central
role, serving multiple purposes including (but not limited to) task proposal (Wang et al., 2023; Hua
etal., 2024; Katara et al., 2023; Wang et al., 2024a), formalized code generation (Ma et al., 2023; Mu
et al., 2024), validation of simulation environments (Chen et al., 2024), and guidance for learning
robotic trajectories (Ma et al., 2023; Huang et al., 2023). Researchers in embodied intelligence have
also extensively integrated foundation models into various aspects of robotics. These applications
include guiding reinforcement learning and trajectory optimization to obtain robotic motion policies
in simulation (Wang et al., 2024b; Ma et al., 2023; Huang et al., 2023; Venkataraman et al., 2025),
decomposing complex long-horizon tasks into shorter and simpler subtasks (Huang et al., 2023;
Wang et al., 2023; Hua et al., 2024), augmenting data for improved learning efficiency (Yu et al.,
2023), and generating video-based supervision to guide robotic trajectory learning (Jiang et al.,
2025; Zhang et al., 2025; Ye et al., 2025).

2.2 GENERATIVE SIMULATION

Generative simulation (Wang et al., 2023; Xian et al., 2023; Chen et al., 2024; Yang et al., 2024)
has recently emerged as a promising direction in robotics, leveraging the capabilities of foundation
models to scale up data generation by producing both simulation environments and correspond-
ing policies without task-specific handcrafting (Katara et al., 2023; Nasiriany et al., 2024; Authors,
2024). Owing to the strong generalization ability of foundation models, generative simulation meth-
ods can typically yield data with high diversity. For example, RoboGen (Wang et al., 2023) generates
datasets involving robot locomotion and gripper-based manipulation of articulated and soft-body ob-
jects; GenSim (Wang et al., 2024a) produces pick-and-place data using suction-based manipulation;
and GenSim2 (Hua et al., 2024) extends this line by generating gripper-based manipulation data
and further deploying the learned simulation policies to the real world. These approaches highlight
the potential of generative simulation for creating synthetic data in robotics. However, they have

consistently overlooked the generation of dexterous hand tasks, which involve substantially higher
complexity and degrees of freedom.

2.3 DEXTEROUS HAND MANIPULATION

Dexterous hand manipulation has long been recognized as a central challenge in robotics. Recent
years have witnessed significant advances through reinforcement learning (RL) (Qi et al., 2022;
2025; Singh et al., 2024; Anthropic, 2025; Lin et al., 2024b) and imitation learning (IL) (Lin et al.,
2024b; Zhong et al., 2025; Wu et al., 2024). A key limitation of imitation learning is its depen-
dence on demonstration data collected in comparable environments. In contrast, our approach lever-
ages reinforcement learning to complete tasks in automatically generated simulation environments,
thereby producing large-scale trajectories that can serve as training data for imitation learning. Con-
sequently, our work emphasizes RL combined with a sampling-based motion planner. In RL-based
dexterous hand research, policies are typically trained in simulation before being transferred to the
real world (Lin et al., 2024a; Qi et al., 2022). Some approaches rely solely on reward functions de-
signed by humans or language models Ma et al. (2023). With carefully designed reward functions,
RL alone has been shown to learn short-horizon tasks, such as in-hand object rotation (Qi et al.,
2022; 2025) and grasp-and-place operations (Chen et al., 2022). However, for long-horizon tasks
that require extended, collision-free movements, pure RL approaches often face challenges with
sample efficiency due to vast exploration spaces and sparse rewards. RL with motionplanning,this
hierarchical strategy,has been shown to significantly improve learning efficiency and success rates
in complex manipulation scenarios (Yamada et al., 2020).

3 GENDEXHAND

We propose GenDexHand, a generative agent designed to autonomously construct dexterous hand
manipulation tasks entirely in simulation. To produce high-quality and diverse tasks, we structure
the pipeline into three stages: propose and generate, multimodal large language model (MLLM)
refine, and policy generation, as summarized in Figure 2. In the first stage, the system leverages
robotic assets and object libraries to propose and generate candidate tasks, constructing correspond-
ing simulation environments and defining task objectives. The second stage introduces MLLM
refinement, where initially generated tasks are iteratively adjusted to ensure both semantic plausibil-
ity and physical consistency. In the final stage, reinforcement learning, motion planning, and related
control strategies are employed to generate robot trajectories that successfully solve the refined tasks.

3.1 PROPOSAL AND GENERATION

GenDexHand begins by generating a diverse set of task proposals based on the assets and dexterous
hand models available within its internal library. In our design, GenDexHand is provided with object
assets randomly sampled from publicly available repositories such as DexYCB (Chao et al., 2021),
RoboTwin (Mu et al., 2025; Chen et al., 2025), and Partnet-Mobility (Mo et al., 2019). Given this
library and a specified robotic hand model, a large language model (LLM) proposes feasible tasks
grounded in the available objects. We then perform an additional verification step to confirm that all
referenced objects are present. For instance, the LLM might propose “put the apple into the bowl,”
which requires both “apple” and “bowl” to exist in the library. If any required object is missing, the
LLM must retry until a valid task is produced.

We use Claude Sonnet 4.0 as our main backend LLM. Using assets randomly sampled from datasets
such as DexYCB, RoboTwin, and Partnet-Mobility—including objects and articulated items like
“laptop,” “printer,” “cabinet,” and “tennis ball”’—the LLMs leverage their semantic knowledge of
potential object interactions to propose realistic tasks. Examples in Figure | include “put the apple
in the bowl,” “rotate a tennis ball,” and “open a laptop.” These tasks are semantically meaningful
and provide explicit guidance, with each task naturally associated with specific contextual scenes.
For instance, a task such as “open a laptop” is more likely to be situated in an office or on a desk
rather than in a bathroom. Finally, each task proposal is enriched with detailed elements, including
a task name, scene specification, background image, and associated object assets. Details are shown
in Section B.1

LLINT3

Embodied Asset Proposal and Generation MLLM Refinement
Asset Selection Before Refinement

éi*‘ Cabinet, mini soccer ball, bow!

Task Proposal
Open the garage cabinet and place the mini

soccer ball inside the bowl, then store the
bowl with ball in the cabinet.

* Asset Configuration
Object Asset Model_id

Orientation (1.0, 0.0, 0.0, 0.0)

LLM
- .\ — Position (0.1, -0.5, 0.0)
\ Scale 2.0
v \\,«

Task Decomposition

| Open « Approachy PutSoccer | Pickup \ Place in the
vﬂ‘ ‘ I ‘ Cabinet”. Soccer 7. in the Bowl ” the Bowl”Cabinet

Control Policy Guidance

Rewarded RL The bowl is positioned directly in front of the
S < > . . . 5 cabinet, which will prevent the robot from
\q Fingertip Proximity Action Penalty Motion opening the drawer in the first step of the task.

Success Bonus. Object Stability Planning MLLM 002_bowl -> rotate_x_+90
v Obejct Goal Distance The bowl is on its side, making it impossible
W hl'“ for the robot to place the soccer ball inside it.
L~ 002_bow! -> move_Y_+0.6

Policy Generation via Reinforcement Learning and Motion Planning
'

Figure 2: Overview of the GenDexHand pipeline for task generation. The process consists of four
stages: Environment Proposal, Environment Creation, MLLM Refinement, and Trajectory Genera-
tion. Embodied assets and object assets are first provided to the Generator to produce an environment
proposal. The simulator then renders multi-view images of the proposed scene, which are refined
using an MLLM. Finally, the refined environment and proposal are combined to generate the result-
ing dexterous hand trajectory.

Once task proposals are validated, GenDexHand proceeds to generate the corresponding task envi-
ronments. At this stage, several key processes are carried out: (i) object size adjustment, (ii) object
configuration generation, and (iii) scene configuration generation.

Object size adjustment. Since our objects are sourced from large-scale public datasets, their sizes
exhibit substantial variance. To ensure that the generated tasks are physically plausible, we adjust
object scales relative to the dexterous hand model. For example, the size of a tennis ball is rescaled to
fall within the graspable range of the dexterous hand, thereby preserving the realism and feasibility
of the manipulation tasks.

Object configuration generation. A plausible task also requires objects to be placed in appropriate
positions and initialized in reasonable states. For example, in the task “place an object inside a
drawer,” the object should initially be positioned outside the cabinet, while the cabinet itself should
begin in a closed state. To achieve this, we leverage large language models to generate object
configurations, which specify both the placement and the state of objects within the scene.

Scene configuration generation. By combining the previously obtained object configurations, we
obtain an initial scene layout. However, the diversity and realism of tasks can be further enhanced
by introducing variations in backgrounds and fixed structures. At this stage, we again employ large
language models to compose object configurations and augment them with additional scene elements
such as static objects and background images. The resulting output is represented in the form of a
complete scene configuration.

3.2 MLLM REFINEMENT

In the previous subsection, we described how tasks can be generated from scratch; however, the
quality of directly generated tasks is often difficult to consistently assure. To improve task fidelity
and obtain high-quality dexterous hand trajectory data, we introduce an additional refinement stage,
where the generated environments are adjusted under the supervision of multimodal large language
models.

Once a complete scene configuration file is obtained, it is instantiated in simulation to construct the
task environment. Cameras embedded in the simulator are then used to render multi-view images
of the scene. These rendered images provide critical feedback on whether the generated task aligns
with its real-world counterpart, whether object sizes conform to commonsense physical constraints,
and whether issues such as interpenetration or misplacement occur. Furthermore, aspects such as
lighting, static structures, and background images can also be verified for realism.

In our pipeline, we adopt Gemini 2.5 Pro (Comanici et al., 2025) as the multimodal large language
model responsible for both analyzing rendered scenes and providing modification suggestions. Once
issues are identified, Gemini outputs explicit adjustment directives for object size, placement, and
orientation. These directives are then implemented through simple mathematical operations on the
configuration file, ensuring that modifications remain precise and consistent. This design avoids
the pitfalls of relying on language models for numerical computation while maintaining accuracy in
refining scene configurations.

By iteratively refining scenes with this process, the system achieves a significantly higher degree of
realism and produces dexterous hand environments that are better aligned with physical and semantic
constraints.

3.3 TRAJECTORY GENERATION

To bridge the gap between a generated task scene and a successful dexterous manipulation trajectory,
we propose a hierarchical framework orchestrated by the LLM(Claude Sonnet 4.0).

This framework empowers the LLM to act as a high-level task planner with three key responsibili-
ties: (i) decomposing long-horizon instructions into a sequence of simpler, actionable subtasks; (ii)
selecting the most appropriate low-level controller—either motion planning (Sucan et al., 2012) or
reinforcement learning (Schulman et al., 2017)—for each subtask; and (iii) dynamically managing
the robot’s active degrees of freedom (DoF) to simplify control.

For subtasks requiring collision-free, point-to-point motion, such as reaching to an object, we em-
ploy a sampling-based motion planner. Based on the subtask instruction, the LLM generates a target
pose for the end-effector (i.e., the palm’s position and orientation). The motion planner then gen-
erates a feasible trajectory for the robot to reach this target pose while avoiding obstacles in the
environment.

To address subtasks involving contact-rich, fine-grained manipulation, we utilize reinforcement
learning (RL). We train a dedicated RL policy for each type of dexterous subtask (e.g., grasping,
placing, twisting). The training is conducted within the generated simulation scene, using reward
functions that are autonomously shaped by the LLM to reflect the subtask’s goal, as detailed in
Section B.2.

This hierarchical design is motivated by several key principles. First, long-horizon tasks challenges
that are difficult to solve with a single end-to-end policy. By decomposing a task like “pick up a
tennis ball and rotate it” into subtasks (“approach”, “grasp”, “rotate”), the LLM allows for tailored
strategies at each stage. Second, the LLM dynamically reduces the high dimensionality of the
control problem by constraining DoFs based on subtask instruction, allowing the RL to focus solely
on the specific joints, which improves both learning efficiency and policy robustness. Finally, our
hybrid use of motion planning and RL leverages the strengths of each paradigm. As shown in
Figure 4, motion planning excels at generating efficient and stable paths for transport and reaching,
while RL is more adept at handling the complex contact dynamics inherent in manipulation.

By synergistically combining these strategies, our framework effectively tackles long-horizon dex-
terous manipulation tasks. The LLM acts as a high-level scheduler, delegating control to the most

appropriate low-level module, which significantly improves the success rate and robustness of ac-
quiring high-quality trajectories.

4 EXPERIMENT

GenDexHand is designed as an automated agent capable of generating an unbounded number of
dexterous hand manipulation tasks. However, due to computational constraints, it is infeasible to
evaluate an unlimited set of tasks in practice. Instead, we conduct experiments on a representative
subset of tasks. Our experimental study aims to demonstrate two key aspects: (i) the quality of
generated tasks is significantly improved after refinement, while maintaining strong diversity; and
(ii) the proposed methods for obtaining dexterous hand trajectories are both reasonable and effective.

4.1 EXPERIMENTAL SETUP

We adopt Sapien as our simulation platform. For task generation, we employ Claude 4 Sonnet as
the language model for text-based task specification and Gemini 2.5 Pro as the multimodal large
language model for scene validation and refinement; additional implementation details are provided
in Section B.1. During training, we run 1024 parallel environments, where objects in each envi-
ronment are subjected to randomized perturbations in both position and orientation. The simulation
frequency is set to 120 Hz, while the control frequency is 20 Hz. To ensure a fair comparison be-
tween settings with and without subtask decomposition, we fix the episode length at 400 steps (20s)
in the case without subtask decomposition. When subtask decomposition is applied, each subtask is
limited to 200 steps (10s), resulting in comparable overall horizon lengths across the two settings.
Training is conducted for a total of 250 epochs. Further implementation details are provided in
Section B.2.

4.2 TASK QUALITY OF GENDEXHAND

Although large language models exhibit a certain degree of spatial reasoning capability, the inherent
noise in 3D object datasets—such as inconsistencies in object scale, orientation, and centroid—often
leads to configuration files that produce scenes of uneven quality. To address this issue, we render
each generated scene from three different viewpoints and provide the resulting images to a multi-
modal large language model for analysis. Based on its feedback, the configuration file is subse-
quently refined to improve scene plausibility.

For example, as illustrated in the Figure 3, the microwave in the first scene is disproportionately
large relative to the robot hand, bowl, and apple. The multimodal large language model recommends
reducing its size to half of the original. In the second scene, the laptop is also incorrectly scaled,
and a marker pen intersects with the laptop mesh. The multimodal large language model suggests
adjusting the laptop to half of its size and shifting the marker pen by -0.3 meters along the Y-
axis. Overall, by iteratively refining configuration files using rendered images and multimodal large
language model feedback, we can substantially improve the consistency of generated scenes with
real-world semantics and physical plausibility.

To evaluate task diversity, we employ a semantic embedding-based approach using three widely
adopted pre-trained language model encoders to extract high-dimensional representations of task
descriptions. We then compute pairwise cosine similarities across all task pairs and report the aver-
age cosine similarity as the diversity metric, where lower values indicate higher semantic diversity.
As shown in Table 1, GenDexHand achieves competitive diversity scores of 0.2880, 0.2836, and
0.3156 across the three encoders. While RoboGen and Bi-DexHands demonstrate slightly supe-
rior diversity in some metrics, GenDexHand substantially outperforms RoboTwin and Meta-World,
with the latter showing significantly higher similarity scores (0.52-0.60), indicating lower task di-
versity. These results demonstrate that GenDexHand effectively generates semantically diverse task
descriptions, contributing to a rich and varied benchmark for dexterous manipulation evaluation.

4.3 EFFICIENCY OF POLICY LEARNING

In this experiment, we evaluate three representative tasks of increasing complexity: Open Cabinet,
Pick up Bottle, and Put the Apple into the Bowl. The first task requires only simple coordination be-

MLLM Analysis

The microwave in
the scene is
oversized and
inconsistent with
the scale of other
objects.

MLLM Adjustment

SCALE_ACTION:
partnet:7310 - 0.5

MLLM Analysis

The laptop in the
scene is oversized,
and
interpenetration

MLLM Adjustment

POSITION_ACTION:
ycb:040_large_marker ->
move_Y_-0.30

occurs between
the marker and
the laptop.

SCALE_ACTION:
partnet:9748 -> 0.5

Figure 3:
Scale_Action, formatted as object - scale value, Position_Action, formatted as object - move_[x/y/z]
value, and Pose_Action, formatted as object - rotate_[x/y/z] value.

Two examples of task refinement using MLLM. Modification directives include

Table 1: Results for text-based task description average cosine similarity.

Method all-MiniLM-L6-v2 all-mpnet-base-v2 all-distilroberta-v1
GenDexHand 0.2880 0.2836 0.3156
RoboGen 0.1906 0.2174 0.1952
RoboTwin 0.3237 0.3589 0.3945
Bi-DexHands 0.2212 0.2110 0.2030
Meta-World 0.5213 0.5335 0.5981

tween a single finger and arm motion, the second demands cooperation between the four fingers and
the thumb, and the last further requires an understanding of interactions between multiple objects.

As illustrated in Figure 4, the results reveal pronounced differences in policy learning efficiency
across these tasks. When relying solely on reward functions and success/failure verification func-
tions generated directly by a language model, Open Cabinet can be solved with a non-trivial success
rate, provided that the generated functions are accurate and consistent. However, for more complex
tasks such as Pick up Bottle and Put the Apple into the Bowl, this approach fails to achieve mean-
ingful success, underscoring the limitations of direct reward generation for dexterous manipulation.

Introducing task decomposition into subtasks leads to marginal improvements but remains insuffi-
cient when all degrees of freedom (DoFs) are left unconstrained. In this setting, the system still
fails to consistently solve complex tasks such as bottle grasping or placing the apple into the bowl.
Once we further restrict the dexterous hand’s action space by freezing redundant DoFs during spe-
cific subtask phases, performance improves, enabling moderate success on tasks like Pick up Bottle.
However, the most significant gains are achieved when integrating motion planning for arm-level
control while leaving finger-level coordination to reinforcement learning. This hybrid approach
not only stabilizes exploration but also yields a substantial average improvement of 53.4% in task
success rate across all evaluated scenarios, highlighting the necessity of combining structured de-
composition and constrained control for robust dexterous hand policy learning.

To address this issue, we integrate motion planning to control arm-level trajectories while leaving
fine finger coordination to reinforcement learning. This hybrid approach significantly increases
success rates across tasks, illustrating that constraining exploration through structured control is
essential for efficient and reliable policy learning in dexterous hand settings.

100- 100%

£ 80

[0} 66.7%

= 9,

S 60 60%

@

S 40- 40% 40% 40%

O

@ 20- 20%

13.3%
o- 0% 0% 0% 0% 0% 0% 0%

Open Cabinet Pick up bottle Put apple into a bowl Average
mmm w/o subgoal w/ subgoals mmm v/ freeze-DOFs mmE w/ motion-planning (Ours)

= 204.8

£ 200-

a

9] 153.6153.6 153.6

t 150-

o 125.6

] 102.4102.4 102.4 102.4

g 100-

2 64.1

> 50-

0- - .

Open Cablnet Pick up bottle Put apple into a bowl Average
B w/o subgoal w/ subgoals mm w/ freeze-DOFs = w/ motion-planning (Ours)

Figure 4: Bar chart comparing three tasks: “Open Cabinet,” “Pick up Bottle,” and “Put the Apple
into Bowl.” The Y-axis denotes the success rate 1 and the number of environment steps | required
to collect 1000 successful trajectories in evaluation. Four methods are evaluated: (i) w/o subgoal,
baseline RL without subtask decomposition; (ii) w/ subgoals, RL with tasks decomposed into short-
horizon subgoals; (iii) w/ freeze-DOFs, RL with selective freezing of redundant degrees of freedom;
and (iv) w/ motion planning (Ours), approaching subtasks using motion planning instead.

In addition to task success rates, we also evaluate the efficiency of trajectory collection, since an
automated pipeline must not only generate tasks but also produce task-solving trajectories at scale.
Our focus lies in efficiently collecting diverse successful trajectories rather than fully training re-
inforcement learning models. Accordingly, we measure the number of simulation steps required
to obtain 1000 successful trajectories across the three representative tasks under different methods.
Conversely, if a method fails to produce 1000 successful trajectories, we fall back to completing the
full reinforcement learning training for all subtasks, following the experimental details described in
Section 4.1.

As shown in Figure 4, directly applying reinforcement learning without subtask decomposition fails
to efficiently accumulate successful trajectories for complex tasks. Although the introduction of
subtask decomposition allows reinforcement learning to eventually solve more challenging tasks, it
also substantially increases the number of training phases required, resulting in lower overall effi-
ciency. Freezing redundant DoFs during subtasks yields improvements in sample efficiency, yet still
demands more simulation steps than baseline reinforcement learning. In contrast, integrating motion
planning to guide arm-level movements while reserving finger-level coordination for reinforcement
learning dramatically reduces the number of required steps. By eliminating unstable exploration
during approach and movement subtasks, this hybrid strategy enables the rapid collection of large
numbers of successful trajectories, thereby delivering a marked improvement in overall efficiency.

5 CONCLUSION AND DISCUSSION

In this paper, we introduced GenDexHand, a fully automated pipeline for generating dexterous hand
manipulation tasks in simulation. Unlike previous generative approaches that primarily target low-
DoF manipulators or locomotion, our pipeline focuses on dexterous hands, where data scarcity has
long posed a bottleneck. Because the generation process requires no human intervention during

task synthesis, GenDexHand enables the creation of virtually unlimited dexterous hand data. This
capability is particularly valuable given the inherent scarcity of dexterous hand trajectories and their
importance for scaling imitation learning and other downstream tasks. Despite these contributions,
several limitations remain. First, extending support to a wide variety of dexterous hand embodiments
still requires human expertise, especially in adapting assets and task specifications to different hand
models. Second, while our pipeline can generate diverse and complex tasks, extremely challenging
long-horizon tasks remain difficult to solve effectively, even when combining reinforcement learn-
ing with motion planning. Third, policies trained with reward functions generated by large language
models, though capable of completing tasks, may still exhibit instability or jitter in their motions.
Nevertheless, we expect the impact of these limitations to diminish over time as foundation mod-
els become more powerful and reinforcement learning methods continue to advance. We believe
GenDexHand represents a significant step toward bridging the gap between generative models and
dexterous embodied intelligence,

6 ETHICS STATEMENT

This work does not involve human or animal subjects, nor does it raise privacy, security, or fair-
ness concerns. All object assets used for simulation were drawn from publicly available datasets
(e.g., DexYCB, Partnet-Mobility) under their respective licenses. Our proposed framework, Gen-
DexHand, focuses exclusively on simulated robotic environments and does not pose direct risks of
harmful real-world deployment. All authors have read and adhered to the ICLR Code of Ethics
throughout the development and writing of this work.

7 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. The core components
of our pipeline, including task proposal, environment generation, refinement, and policy learning,
are described in detail in Section 3. Experimental settings such as simulation parameters, control
frequency, training epochs, and parallel environments are reported in Section 4.1. Section B.1,
Section B.2, and Section B.3 provides additional details on task prompts, configuration formats,
and refinement procedures. Moreover, all datasets used in this work (DexYCB, Partnet-Mobility,
RoboTwin) are publicly available, and our data preprocessing steps are carefully documented in the
supplementary material. Together, these descriptions are intended to provide sufficient information
for reproducing our experiments.

10

REFERENCES

Bo Ai, Liu Dai, Nico Bohlinger, Dichen Li, Tongzhou Mu, Zhanxin Wu, K Fay, Henrik I Chris-
tensen, Jan Peters, and Hao Su. Towards embodiment scaling laws in robot locomotion. Confer-
ence on Robot Learning (CoRL), 2025. URL https://arxiv.org/abs/2505.05753.

Anthropic. Claude 4 (opus 4 & sonnet 4). Model card / blog post by Anthropic, May 2025. Released
May 22, 2025 (Opus 4 & Sonnet 4) — model family includes Claude Opus 4 and Claude Sonnet
4. https://www.anthropic.com/news/claude—4.

Genesis Authors. Genesis: A generative and universal physics engine for robotics and beyond,
December 2024. URL https://github.com/Genesis-Embodied-AI/Genesis.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke,
Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi,
James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. my: A vision-
language-action flow model for general robot control, 2024. URL https://arxiv.org/
abs/2410.24164.

Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov, Ankur Handa, Jonathan Tremblay, Yashraj S.
Narang, Karl Van Wyk, Umar Igbal, Stan Birchfield, Jan Kautz, and Dieter Fox. Dexycb: A
benchmark for capturing hand grasping of objects, 2021. URL https://arxiv.org/abs/
2104.04631.

Feng Chen, Botian Xu, Pu Hua, Peiqi Duan, Yanchao Yang, Yi Ma, and Huazhe Xu. On the eval-
uation of generative robotic simulations, 2024. URL https://arxiv.org/abs/2410.
08172.

Tianxing Chen, Zanxin Chen, Baijun Chen, Zijian Cai, Yibin Liu, Zixuan Li, Qiwei Liang, Xianliang
Lin, Yiheng Ge, Zhenyu Gu, Weiliang Deng, Yubin Guo, Tian Nian, Xuanbing Xie, Qiangyu
Chen, Kailun Su, Tianling Xu, Guodong Liu, Mengkang Hu, Huan ang Gao, Kaixuan Wang,
Zhixuan Liang, Yusen Qin, Xiaokang Yang, Ping Luo, and Yao Mu. Robotwin 2.0: A scalable
data generator and benchmark with strong domain randomization for robust bimanual robotic
manipulation, 2025. URL https://arxiv.org/abs/2506.18088.

Yuanpei Chen, Yaodong Yang, Tianhao Wu, Shengjie Wang, Xidong Feng, Jiechuan Jiang,
Zongqing Lu, Stephen Marcus McAleer, Hao Dong, and Song-Chun Zhu. Towards human-
level bimanual dexterous manipulation with reinforcement learning. In Thirty-sixth Confer-
ence on Neural Information Processing Systems Datasets and Benchmarks Track, 2022. URL
https://openreview.net/forum?id=D29JbExXncTP.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities, 2025.

Pu Hua, Minghuan Liu, Annabella Macaluso, Lirui Wang, Yunfeng Lin, Weinan Zhang, Huazhe
Xu, and Xiaolong Wang. Gensim2: Realistic robot task generation with LLM. In 8th An-
nual Conference on Robot Learning, 2024. URL https://openreview.net/forum?id=
5u916U6157.

Zhiao Huang, Feng Chen, Yewen Pu, Chunru Lin, Hao Su, and Chuang Gan. Diffvl: Scaling up soft
body manipulation using vision-language driven differentiable physics, 2023.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Manuel Y. Galliker, Dibya Ghosh,
Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin
LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z.
Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner,
Quan Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky. 7 5: a
vision-language-action model with open-world generalization, 2025. URL https://arxiv.
org/abs/2504.16054.

11

https://arxiv.org/abs/2505.05753
https://www.anthropic.com/news/claude-4
https://github.com/Genesis-Embodied-AI/Genesis
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2104.04631
https://arxiv.org/abs/2104.04631
https://arxiv.org/abs/2410.08172
https://arxiv.org/abs/2410.08172
https://arxiv.org/abs/2506.18088
https://openreview.net/forum?id=D29JbExncTP
https://openreview.net/forum?id=5u9l6U61S7
https://openreview.net/forum?id=5u9l6U61S7
https://arxiv.org/abs/2504.16054
https://arxiv.org/abs/2504.16054

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Angqing Jiang, Yu Gao, Yiru Wang, Zhigang Sun, Shuo Wang, Yuwen Heng, Hao Sun, Shichen Tang,
Lijuan Zhu, Jinhao Chai, Jijun Wang, Zichong Gu, Hao Jiang, and Li Sun. Irl-vla: Training an
vision-language-action policy via reward world model, 2025. URL https://arxiv.org/
abs/2508.06571.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Pushkal Katara, Zhou Xian, and Katerina Fragkiadaki. Gen2sim: Scaling up robot learning in
simulation with generative models, 2023.

Fangqi Lin, Yingdong Hu, Pingyue Sheng, Chuan Wen, Jiacheng You, and Yang Gao. Data scaling
laws in imitation learning for robotic manipulation, 2025. URL https://arxiv.org/abs/
2410.18647.

Toru Lin, Zhao-Heng Yin, Haozhi Qi, Pieter Abbeel, and Jitendra Malik. Twisting lids off with two
hands, 2024a. URL https://arxiv.org/abs/2403.02338.

Toru Lin, Yu Zhang, Qiyang Li, Haozhi Qi, Brent Yi, Sergey Levine, and Jitendra Malik. Learning
visuotactile skills with two multifingered hands, 2024b. URL https://arxiv.org/abs/
2404 .16823.

Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation, 2025. URL
https://arxiv.org/abs/2410.07864.

Raymond R Ma and Aaron M Dollar. On dexterity and dexterous manipulation. In 2011 15th
International Conference on Advanced Robotics (ICAR), pp. 1-7. IEEE, 2011.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv preprint arXiv:2310.12931, 2023.

Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and Hao
Su. PartNet: A large-scale benchmark for fine-grained and hierarchical part-level 3D object
understanding. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

Yao Mu, Junting Chen, Qinglong Zhang, Shoufa Chen, Qiaojun Yu, Chongjian Ge, Runjian Chen,
Zhixuan Liang, Mengkang Hu, Chaofan Tao, Peize Sun, Haibao Yu, Chao Yang, Wenqi Shao,
Wenhai Wang, Jifeng Dai, Yu Qiao, Mingyu Ding, and Ping Luo. Robocodex: Multimodal code
generation for robotic behavior synthesis, 2024. URL https://arxiv.org/abs/2402.
16117.

Yao Mu, Tianxing Chen, Shijia Peng, Zanxin Chen, Zeyu Gao, Yude Zou, Lunkai Lin, Zhigiang
Xie, and Ping Luo. Robotwin: Dual-arm robot benchmark with generative digital twins (early
version), 2025. URL https://arxiv.org/abs/2409.02920.

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for gener-
alist robots, 2024. URL https://arxiv.org/abs/2406.02523.

OpenAl. Gpt-4 technical report, 2023.

OpenAl. Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276.

OpenAl. Gpt-5. GPT-5 system card, released via OpenAl blog and ChatGPT platform, August
2025. https://openai.com/index/introducing—gpt-5/.

12

https://arxiv.org/abs/2508.06571
https://arxiv.org/abs/2508.06571
https://arxiv.org/abs/2410.18647
https://arxiv.org/abs/2410.18647
https://arxiv.org/abs/2403.02338
https://arxiv.org/abs/2404.16823
https://arxiv.org/abs/2404.16823
https://arxiv.org/abs/2410.07864
https://arxiv.org/abs/2402.16117
https://arxiv.org/abs/2402.16117
https://arxiv.org/abs/2409.02920
https://arxiv.org/abs/2406.02523
https://arxiv.org/abs/2410.21276
https://openai.com/index/introducing-gpt-5/

Debalina Ghosh Paul, Hong Zhu, and Ian Bayley. Benchmarks and metrics for evaluations of code
generation: A critical review, 2024. URL https://arxiv.org/abs/2406.12655.

Haozhi Qi, Ashish Kumar, Roberto Calandra, Yi Ma, and Jitendra Malik. In-hand object rotation
via rapid motor adaptation, 2022. URL https://arxiv.org/abs/2210.04887.

Haozhi Qi, Brent Yi, Mike Lambeta, Yi Ma, Roberto Calandra, and Jitendra Malik. From simple to
complex skills: The case of in-hand object reorientation, 2025. URL https://arxiv.org/
abs/2501.054309.

Navid Rajabi and Jana Kosecka. Gsr-bench: A benchmark for grounded spatial reasoning evaluation
via multimodal 1lms, 2024. URL https://arxiv.org/abs/2406.13246.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Himanshu Gaurav Singh, Antonio Loquercio, Carmelo Sferrazza, Jane Wu, Haozhi Qi, Pieter
Abbeel, and Jitendra Malik. Hand-object interaction pretraining from videos, 2024. URL
https://arxiv.org/abs/2409.08273.

Ilias Stogiannidis, Steven McDonagh, and Sotirios A. Tsaftaris. Mind the gap: Benchmarking
spatial reasoning in vision-language models, 2025. URL https://arxiv.org/abs/2503.
19707.

Ioan A. Sucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning Library, 2012. URL
https://ompl.kavrakilab.org.

Gemini Team. Gemini: A family of highly capable multimodal models, 2023.

Marcel Torne, Arhan Jain, Jiayi Yuan, Vidaaranya Macha, Lars Ankile, Anthony Simeonov, Pulkit
Agrawal, and Abhishek Gupta. Robot learning with super-linear scaling, 2024. URL https:
//arxiv.org/abs/2412.01770.

Sreyas Venkataraman, Yufei Wang, Ziyu Wang, Navin Sriram Ravie, Zackory Erickson, and David
Held. Real-world offline reinforcement learning from vision language model feedback, 2025.
URL https://arxiv.org/abs/2411.05273.

Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shridhar, Chen Bao, Yuzhe Qin, Bailin Wang,
Huazhe Xu, and Xiaolong Wang. Gensim: Generating robotic simulation tasks via large language
models, 2024a.

Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang, Yian Wang, Zackory Erickson, David Held,
and Chuang Gan. Robogen: Towards unleashing infinite data for automated robot learning via
generative simulation, 2023.

Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erickson.
RI-vlm-f: Reinforcement learning from vision language foundation model feedback, 2024b. URL
https://arxiv.org/abs/2402.03681.

Tianhao Wu, Yunchong Gan, Mingdong Wu, Jingbo Cheng, Yaodong Yang, Yixin Zhu, and Hao
Dong. Dexterous functional pre-grasp manipulation with diffusion policy, 2024. URL https:
//arxiv.org/abs/2403.12421.

Zhou Xian, Theophile Gervet, Zhenjia Xu, Yi-Ling Qiao, Tsun-Hsuan Wang, and Yian Wang. To-
wards generalist robots: A promising paradigm via generative simulation, 2023. URL https:
//arxiv.org/abs/2305.10455.

Jun Yamada, Jack Collins, Shoco U. Mentel, Yusuke Iwasawa, Yutaka Matsuo, and Shixiang Shane
Gu. Motion planner augmented reinforcement learning for robot manipulation in obstructed en-
vironments, 2020. URL https://arxiv.org/abs/2010.11940.

Sizhe Yang, Qian Luo, Anumpam Pani, and Yanchao Yang. Bbsea: An exploration of brain-body
synchronization for embodied agents. arXiv preprint arXiv:2402.08212, 2024.

13

https://arxiv.org/abs/2406.12655
https://arxiv.org/abs/2210.04887
https://arxiv.org/abs/2501.05439
https://arxiv.org/abs/2501.05439
https://arxiv.org/abs/2406.13246
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2409.08273
https://arxiv.org/abs/2503.19707
https://arxiv.org/abs/2503.19707
https://ompl.kavrakilab.org
https://arxiv.org/abs/2412.01770
https://arxiv.org/abs/2412.01770
https://arxiv.org/abs/2411.05273
https://arxiv.org/abs/2402.03681
https://arxiv.org/abs/2403.12421
https://arxiv.org/abs/2403.12421
https://arxiv.org/abs/2305.10455
https://arxiv.org/abs/2305.10455
https://arxiv.org/abs/2010.11940

Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Sejune Joo, Jianwei Yang, Baolin Peng, Ajay Man-
dlekar, Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, Lars Liden, Kimin Lee, Jianfeng Gao, Luke
Zettlemoyer, Dieter Fox, and Minjoon Seo. Latent action pretraining from videos, 2025. URL
https://arxiv.org/abs/2410.11758.

Tianhe Yu, Ted Xiao, Austin Stone, Jonathan Tompson, Anthony Brohan, Su Wang, Jaspiar Singh,
Clayton Tan, Dee M, Jodilyn Peralta, Brian Ichter, Karol Hausman, and Fei Xia. Scaling robot
learning with semantically imagined experience, 2023. URL https://arxiv.org/abs/
2302.11550.

Jiazhao Zhang, Kunyu Wang, Shaoan Wang, Minghan Li, Haoran Liu, Songlin Wei, Zhongyuan
Wang, Zhizheng Zhang, and He Wang. Uni-navid: A video-based vision-language-action model
for unifying embodied navigation tasks, 2025. URL https://arxiv.org/abs/2412.
06224.

Xinlu Zhang, Yujie Lu, Weizhi Wang, An Yan, Jun Yan, Lianke Qin, Heng Wang, Xifeng Yan,
William Yang Wang, and Linda Ruth Petzold. Gpt-4v(ision) as a generalist evaluator for vision-
language tasks, 2023.

Bingchen Zhao, Yongshuo Zong, Letian Zhang, and Timothy Hospedales. Benchmarking multi-
image understanding in vision and language models: Perception, knowledge, reasoning, and
multi-hop reasoning, 2024. URL https://arxiv.org/abs/2406.12742.

Yifan Zhong, Xuchuan Huang, Ruochong Li, Ceyao Zhang, Zhang Chen, Tianrui Guan, Fanlian
Zeng, Ka Num Lui, Yuyao Ye, Yitao Liang, Yaodong Yang, and Yuanpei Chen. Dexgraspvla:
A vision-language-action framework towards general dexterous grasping, 2025. URL https:
//arxiv.org/abs/2502.20900.

Fengbin Zhu, Ziyang Liu, Xiang Yao Ng, Haohui Wu, Wenjie Wang, Fuli Feng, Chao Wang,
Huanbo Luan, and Tat Seng Chua. Mmdocbench: Benchmarking large vision-language mod-
els for fine-grained visual document understanding, 2024. URL https://arxiv.org/abs/
2410.21311.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong, Thong
Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
Binyuan Hui, Niklas Muennighoff, David Lo, Daniel Fried, Xiaoning Du, Harm de Vries, and
Leandro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls
and complex instructions, 2025. URL https://arxiv.org/abs/2406.15877.

14

https://arxiv.org/abs/2410.11758
https://arxiv.org/abs/2302.11550
https://arxiv.org/abs/2302.11550
https://arxiv.org/abs/2412.06224
https://arxiv.org/abs/2412.06224
https://arxiv.org/abs/2406.12742
https://arxiv.org/abs/2502.20900
https://arxiv.org/abs/2502.20900
https://arxiv.org/abs/2410.21311
https://arxiv.org/abs/2410.21311
https://arxiv.org/abs/2406.15877

A THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were employed in this work as auxiliary tools to support the writing
process. Specifically, they assisted in refining the clarity of expression, ensuring coherence across
sections, and suggesting stylistic adjustments to align with academic writing standards. All substan-
tive ideas, experimental designs, and conclusions, however, remain the intellectual contributions of
the authors.

B APPENDIX

B.1 DETAIL OF TASK GENERATION

Proposal Generation Prompt

You are a robot manipulation task proposal generation assistant.

Your goal is to propose simple and direct robot manipulation tasks based on available objects
and their semantic properties.

CRITICAL: Task Simplification Requirements:

* Keep tasks SIMPLE and DIRECT - avoid complex multi-step sequences

e Each task should be achievable with 1-3 basic actions maximum

CEIET) LI 1)

* Use ONLY simple atomic action phrases like: “approach”, “grasp”, “release”, “move”,

99 99 99 99

“open”, “close”, ”push”, "pull”
* AVOID complex compound actions like: “pick up”, "put down”, ”’place inside”
» Each action should be a single, atomic movement that can be executed independently
* Focus on single, clear objectives that are easy for robots to execute

[IIET) [LIRET)

» Examples of SIMPLE atomic actions: “approach apple”, “grasp apple”, “open microwave

99 99

door”, ”’close microwave door”

» Examples of COMPLEX actions to AVOID: “pick up apple”, “place apple inside mi-

CERRET) 95 99

crowave”, move apple to table”, ’put cup on table”
* Break down complex actions into atomic steps:
— ”pick up” — “approach” + “grasp”
— ”place inside” — “move” + “release”
Control Mode Guidelines:
* For each task step, specify the appropriate control mode:

— hand - fine manipulation (grasping, releasing, finger movements)
— arm - gross movement (reaching, positioning, large movements)
— both — coordinated movement (pick-and-place, complex manipulation)

Available resources:

1. Pickable Items (YCB objects): {ycb_assets}

2. Robotwin Objects: {laptop_assets}

3. Object Semantic Guidance (includes PartNet articulated objects): {semantic_guidance}
Instructions:

* Analyze the available objects and their properties from the semantic guidance.

» Propose exactly one creative robot manipulation task that involves:

— One PartNet articulated object (chosen from the semantic guidance)
— One YCB pickable object
— One Robotwin object

* Be creative and diverse in object selection! Avoid always choosing the same combinations.

15

» Ensure the task is realistic, feasible, and makes semantic sense.

» Consider object properties like size, graspability, container capacity, and typical usage sce-
narios.

* Diversity Guidelines:

— Try different PartNet objects: microwave, oven, dishwasher, cabinet, drawer, wash-
ing_machine, lamp, laptop, printer, etc.

— Explore various YCB objects: tools, sports items, containers, utensils, not just fruits

— Use different Robotwin objects: plates, cups, utensils, cookware, not just bowls

Output Format:

TASK PROPOSAL

Task Name: [Brief descriptive name for the task]
Selected Objects:

 PartNet Object: [category] (Model ID: [id]) — [brief description of properties]
— Use only REAL numeric Model IDs from the semantic guidance

* YCB Object: [object_id] — [brief description of properties]

» Robotwin Object: [object_id] — [brief description of properties]

Task Description: [Simple, direct description of what the robot needs to accomplish]
Task Steps:

Single atomic action Control Mode: [hand/arm/both] — [explanation]
Optional second atomic action Control Mode: [hand/arm/both] — [explanation]
Optional third atomic action Control Mode: [hand/arm/both] — [explanation]
Scene Context:

* Environment: [Kitchen/Dining/Office/etc.]

* Complexity Level: [Basic/Intermediate/Advanced]

* Estimated Duration: [Short/Medium/Long]

Spatial Considerations:

* Object placement strategy

* Workspace requirements

* Safety considerations

Success Criteria:

What defines successful task completion

We collected and organized a dataset of 3D object assets, accompanied by a list mapping each asset
to its semantic label. Building on this dataset, and guided by the content of the Proposal Generation
Prompt B.1, we generated long-horizon tasks composed of multiple simple operations. During task
proposal generation, we employed a relatively high sampling temperature to encourage diversity in

the proposed tasks. In our implementation, the temperature was set to 1.2.

Scene Configuration Generation Prompt

You are a robot manipulation YAML configuration generation assistant.

Your goal is to generate a precise YAML configuration file based on a given task proposal.
Task Proposal: {task_proposal}

Reference YAML Data: {reference_yaml}

Available Object Information:

1. Pickable Items (YCB objects): {ycb_assets}
2. Robotwin Objects: {laptop_assets}
3. Object Semantic Guidance (includes PartNet articulated objects): {semantic_guidance}

16

Instructions:

Generate a YAML configuration that implements the task proposal exactly as specified.
Use the objects mentioned in the task proposal (do not substitute with different objects).

The output YAML must strictly follow the structure of the provided example_yaml tem-
plate.

You may only change the content/values, not the structure, keys, or data types of existing
fields.

You must not introduce any new keys, sections, or elements that are not present in the
template.

Task Simplification Requirements:

Keep tasks SIMPLE and DIRECT - avoid complex multi-step sequences.
Each task should be achievable with 1-5 basic atomic actions maximum.

Use ONLY simple atomic action phrases like: approach”, grasp”, release”, move”, open”,
close”, push”, pull”.

AVOID complex compound actions like: pick up”, put down”, place inside”, move to posi-
tion”.

Each action should be a single, atomic movement that can be executed independently.
Focus on single, clear objectives that are easy for robots to execute.

Examples of SIMPLE atomic actions: approach apple”, grasp apple”, open microwave
door”, close microwave door”.

Examples of COMPLEX actions to AVOID: pick up apple”, place apple inside microwave”,
move apple to table”, put cup on table”.

Break down complex actions into atomic steps:
— pick up” — approach” + grasp”
— place inside” — move” + release”

CRITICAL: PartNet Model ID Requirements:

For PartNet articulated objects, you MUST use only the exact Model IDs provided in the
semantic guidance.

DO NOT create fictional IDs like refrigerator_001”, cabinet_001”, or microwave_12345.
Look up the actual available Model IDs from the semantic guidance for each category.

Model IDs are NUMERIC STRINGS (e.g., 350597, 385167, 40147”) — NOT descriptive
names.

VERIFICATION REQUIRED: Always double-check that the Model ID you use exists in
the semantic guidance for that category.

If no specific model id is provided in the semantic guidance, use only the category name
without model_id field.

Control Joint Requirements:

Each sub-stage with method: ‘RL’’ MUST include a control_joint field with
one of these values:

— hand - for fine manipulation tasks (grasping, releasing, precise finger movements)
— arm - for gross movement tasks (reaching, positioning, large arm movements)

— both — for tasks requiring coordinated hand and arm movement (pick-and-place, com-
plex manipulation)

Choose control_joint based on the sub-task requirements:

— Grasping/releasing objects — hand
— Moving to positions — arm

17

— Pick-and-place operations — both
— Opening/closing articulated objects — hand or both
Physical Placement Rules:
* The YAML must include a table object with reasonable positioning.
* The PartNet articulated object must be placed on the ground, not colliding with the table.
* YCB objects should typically be placed on the table surface or in appropriate containers.
» Robotwin objects should be placed on the table surface unless the task specifies otherwise.

» Use table surface dimensions (length 2.418,m along X-axis, width 1.209,m along Y-axis)
for placement calculations.

* Ensure all objects are within robot reach (max reach distance: 0.8,m from robot base).

* Maintain minimum clearances: small objects (0.05,m), large objects (0.1,m), fragile objects
(0.15,m).

Task Implementation:

* Break down the task proposal into appropriate sub-stages if the template supports multiple
stages.

* Each stage should have clear instructions matching the proposal’s task steps.

» Use appropriate control methods (RL, motion_planning) based on the complexity of
each sub-task.

* Ensure the instruction field clearly describes the overall task from the proposal.
Coordinate System:

e Robotbaseisat [-0.5, 0.0, 0.0].

* Positive X is forward, positive Y is left, positive Z is up.

* All positions are in meters.

* All orientations are quaternions [w, x, y, z].

YAML Template: {example_yaml}
Output Requirements:

* Output only the complete YAML configuration.
* Do not include any explanations or additional text.
* Ensure all syntax is valid YAML.

* Use proper indentation and formatting.

Scene Analysis Prompt

You are a professional robotic task environment analyst. I will provide you with multi-view
rendered images of a robotic manipulation task.

Please carefully analyze these images and check if the scene has the following issues. Base
your analysis ONLY on what you can see in the images, not on any configuration files.

Core Inspection Requirements (Excellent Task Definition Standards):

1. Dexterous Hand Reachability Check - Key Focus!
* Critical Requirement: All interactive objects must be near the dexterous hand, not just
near the robotic arm
* Check if the distance between target objects and robot arm end-effector is reasonable
(typically within 100cm)
» Ensure the robot arm can naturally reach the target objects
* Objects should not be placed outside the robot’s workspace

2. Object Spatial Position Check - Key Focus!

18

* Critical Requirement: Objects should not appear behind the robotic arm or behind walls

* Check if objects are obstructed by other large objects (such as cabinets, walls)

» Ensure objects are in visible and reachable areas in front or to the side of the robot

* Avoid placing objects behind the robot or in operational blind spots

* Ensure the objects orientation is reasonable, e.g., bottle, bowl, plate upright, cup hori-
zontal, book flat, etc.

3. Object Size Reasonableness Check - Enhanced Visual Analysis

¢ Critical Requirement: All object sizes must conform to normal conditions based on vi-

sual appearance

* Visual Size Analysis: Compare object sizes in the rendered images with expected real-
world dimensions

* Size Reference Guidelines:
— Microwave: ~0.6m wide x 0.5m deep x 0.3m tall
— Apple: ~0.08m diameter
— Bowl: ~0.15m diameter x 0.06m tall
— Table: scale 2.0 — 2.4m x 1.2m
* Relative Size Assessment:
— Microwave should NOT dominate the scene or appear larger than the table
— Apple should appear small relative to microwave and bowl
— Bowl should be appropriately sized for holding an apple
¢ Scale Adjustment Guidance:

— Too large — reduce scale (e.g., 1.0 — 0.8, 0.6, 0.5)
— Too small — increase scale (e.g., 1.0 — 1.2, 1.5, 2.0)
* Verify scaling parameters are within 0.3-2.0x

4. Object Pose Realism Check - Key Focus!

* Critical Requirement: Object positions and poses should conform to realistic conditions
» Check if container-type objects (bowls, cups, boxes) have openings facing upward

* Confirm if books and notebooks are placed in normal ways

* Verify if bottles, cans, and other objects are placed upright

¢ Check if orientations conform to daily usage habits

5. Physical Collision Issues

* Whether there are overlaps or interpenetrations between objects
* Whether objects have reasonable support (should not be floating)

6. Joint State Issues

* Whether cabinet doors and drawer states match the task description
* Whether laptop open/close states are correct

Analysis Requirements:

1. Scene Layout Observation: Describe the overall scene layout in the 3 viewpoint images
2. Object Identification: Identify all major objects (robot, table, cabinet, YCB items, etc.)

3. Core Inspection: Focus on checking the 4 excellent task definition standards

4. Detailed Analysis: Conduct detailed analysis for each inspection item

5. Correction Suggestions: If issues are found, provide specific feasible correction solutions
Output Format:

* Scene Observation
Describe the scene layout seen in the 3 viewpoint images, including robot position, object
distribution, etc.

19

* Core Inspection Results
1. Dexterous Hand Reachability: [Analysis]
2. Object Spatial Position: [Analysis]
3. Object Size Reasonableness: [Analysis]
4. Object Pose Realism: [Analysis]

* Visual Size Analysis
Object Size Assessment: [Assess each object visually and suggest adjustments]
- [Object Name]: [too large/too small/appropriate] — [Suggested scale]
Reasoning: [Explain why]

* Special Attention Required
- Microwave Size Check: [Analysis]
- Relative Proportions: [Analysis]

* Identified Issues
List all identified issues by priority or state “No obvious issues found”

* Correction Suggestions
Provide YAML correction suggestions: coordinates, angles, dimensions, scale

* Corrected Configuration
Provide corrected YAML configuration or “No correction needed”

After obtaining the proposals, we provide them—along with the object list, an example YAML file,
and the Scene Configuration Generation Prompt B.1 to the Generator. Based on this input, the Gen-
erator produces a corresponding scene configuration file in YAML format. To improve stability in
YAML generation, we adopt a relatively low sampling temperature, set to 0.3 in our experiments.
For each proposal, three YAML files are generated, and their quality is then assessed by the Eval-
uator, which jointly considers both the proposal and the configuration. The best configuration is
selected as the final output.

Once the YAML file is obtained, we render the scene in simulation using three fixed cameras to
capture different viewpoints: left-overhead, right-overhead, and top-down. These rendered images,
together with the Scene Analysis Prompt B.1, are then provided to the Refiner to obtain modification
suggestions. The suggested modifications are subsequently applied to adjust the original configura-
tion, yielding an improved scene specification.

Instruction-to-Task Proposal Prompt

You are a robot manipulation task proposal generation assistant that specializes in interpreting
human natural language instructions.

Your goal is to understand a human’s simple instruction and expand it into a detailed, feasible
robot manipulation task proposal using available objects.

Human Instruction: “{human_instruction}”

Available Resources:

1. Pickable Items (YCB objects): {ycb_assets}
2. Robotwin Objects: {laptop_assets}

3. Object Semantic Guidance (includes PartNet articulated objects): {semantic_guidance}
Instructions:

* Interpret the human instruction and understand the core action/goal.

* Select appropriate objects from the available resources that match or relate to the instruction.

* If the exact object mentioned (e.g., apple”) is not available, select the most similar or appro-
priate substitute from YCB objects.

* Design a complete manipulation task that accomplishes the human’s intent using:

— One PartNet articulated object (that makes sense for the task context)
— One YCB pickable object (that matches or substitutes the mentioned object)
— One Robotwin object (that provides context or serves as a container/surface)

20

* IMPORTANT: Be creative and diverse in object selection! Even when the human mentions
common objects like apple” or “bowl”, consider alternative combinations and contexts to
create varied scenarios.

* Ensure the task is realistic, safe, and executable by a robot arm.

» Consider the semantic properties and typical usage scenarios of selected objects.
» Keep the task simple and focused on the core action requested.

* Diversity Guidelines:

— Try different PartNet objects: microwave, oven, dishwasher, cabinet, drawer, wash-
ing_machine, etc.

— Explore various YCB objects: tools, sports items, containers, utensils, not just fruits
— Use different Robotwin objects: plates, cups, utensils, cookware, not just bowls

Task Simplification Guidelines:
* Keep tasks SIMPLE and DIRECT - avoid complex multi-step sequences.
» Simple actions like grab X should be kept as basic pick-up tasks.
* DO NOT over-expand simple instructions into complex scenarios.
* Focus on the core action requested by the human.
* Use only 1-5 basic actions maximum per task.
» Examples: grab apple” — simple pick-up task, not “pick up apple, open microwave, place
inside, close door”.
Control Mode Guidelines:
* For each task step, specify the appropriate control mode:
— hand” - fine manipulation (grasping, releasing, finger movements)
— arm” — gross movement (reaching, positioning, large movements)
— “both” — coordinated movement (pick-and-place, complex manipulation)

Output Format:

TASK PROPOSAL (Based on Human Instruction: ‘“human_instruction’)
Task Name: [Descriptive name that captures the expanded task]

Human Intent Analysis:

* Original instruction: “{human_instruction}”

* Interpreted goal: [What you understand the human wants to accomplish]

* Task expansion rationale: [Why you designed the task this way]

Selected Objects:

* PartNet Object: [category] (Model ID: [id]) — [why this object fits the task context]

CRITICAL: Use only REAL numeric Model IDs from the semantic guidance (e.g.,
350597, 385167).

— DO NOT create fictional IDs like cabinet_001”, refrigerator_123”, or “microwave_456.
Check the semantic guidance for actual available Model IDs for your chosen category.
If no specific model ID is provided, use only the category name.

* YCB Object: [object_id] — [how this relates to the human instruction]
» Robotwin Object: [object_id] — [role in the expanded task]

Task Description: Simple, direct description of what the robot needs to accomplish — keep it
to 1-2 basic actions maximum
Task Steps:

Single, simple action — use basic phrases like pick up”, place”, open”, close” Control Mode:
[hand/arm/both] — [brief explanation of why this control mode is needed]

Optional second simple action if absolutely necessary Control Mode: [hand/arm/both] —
[brief explanation of why this control mode is needed]

21

Scene Context:

» Environment: [Kitchen/Dining/Office/etc. — chosen to match the task context]
» Complexity Level: [Basic/Intermediate/Advanced]

» Estimated Duration: [Short/Medium/Long]

 Task Category: [Pick-and-Place/Container-Manipulation/Multi-Step/etc.]
Spatial Considerations:

* Object placement strategy

* Workspace requirements

* Safety considerations

* Ergonomic factors

Success Criteria:

What defines successful completion of the expanded task

How to verify the human’s original intent was fulfilled

Contextual Notes:

Any assumptions made about the user’s environment or intent

Alternative interpretations that were considered

Generate exactly one task proposal that meaningfully expands the human instruction into a
complete, executable robot manipulation task.

In addition to allowing the Generator to autonomously propose task candidates, we also implement
a human-guided task generation approach. The workflow is identical to the original pipeline, except
that task proposals are guided by explicit human instructions. The corresponding prompt used for
this process is provided in the Human-Guided Proposal Generation Prompt.

B.2 DETAIL OF POLICY GENERATION

This section introduces our framework for generating reinforcement learning (RL) policy code
for dexterous manipulation. The framework uses a Large Language Model (LLM), guided by
a multi-stage prompting strategy, to create three key functions: a dense reward function (com-
pute_dense_reward), an evaluator (evaluate), and an auxiliary observation function (_get_obs_extra).
We then detail the specific prompts and implementation used in this process.

Our multi-stage strategy provides the LLM with layered context, from the high-level environment
API to specific coding patterns. This structured approach ensures the generated code is functionally
correct, efficient, and robust. The process begins by grounding the LLM in the task environment via
the Environment Prompt (Prompt B.2). This prompt acts as a technical specification, defining the
API, data structures, and helper functions available for code generation.

Env Prompt

You are an expert in robotics, reinforcement learning, and code generation.

Target: Write high-quality reward/evaluation/extra-observation functions for ShadowHand +
UR10e dexterous manipulation tasks.

Focus: Clarity, vectorization, and correct tensor shapes/devices.

Environment Conventions:

e All tensors are [num_envs, ...] and live on self.device

* Pose quaternion order: [w, X, Y, z]

* Not all members exist in every task config; guard with hasattr(self, ...”)

Class Structure:

22

class ShadowHandBaseEnv (BaseEnv) :
self.num_envs: int
self.agent: URlOeShadowHand

Manipulated objects (optional per task)
self.ycb: Actor # merged view for YCB objects
self.robotwin_obj: Actor # merged view for RobotWin objects

Articulated scenes (optional)
self.partnet: Articulation
self.cabinet: Articulation

Goal markers (kinematic actors, no collision)
self.obj_goal_site: Actor # goal for object placement/pose

For articulations, the environment provides:
self.partnet_handle_link: Link
self.cabinet_handle_link: Link

Local handle point on the link (in link local frame):
self.partnet_handle_link_pos: # [num_envs, 3]
self.cabinet_handle_link_pos: # [num_envs, 3]

World-frame handle point utility
self.partnet_handle_link positions (env_idx:
Optional[torch.Tensor] = None) # [|env_idx| or num_envs, 3]

self.cabinet_handle_link positions(env_idx:
Optional [torch.Tensor] = None) # [lenv_idx| or num_envs, 3]

Handle link world pose (center at link origin):
self.cabinet_handle_link.pose.p: # [num_envs, 3]
self.cabinet_handle_link.pose.qg: # [num_envs, 4]

Kinematic helpers
self.cabinet_handle_link_goal: Actor # marker actor;
its pose can be set to handle world point for visualization

self.partnet_handle_link_goal: Actor # marker actor;
same usage for partnet

Joint access of the handle link:

self.cabinet_handle_link.joint.gpos # [num_envs]

self.cabinet_handle_link. joint.qgvel # [num_envs]

self.cabinet_handle_link.joint.limits : # [num_envs, 2]

Precomputed joint targets for opening/closing:

self.partnet_open_target_gpos: # [num_envs, 1]
self.partnet_close_target_gpos: # [num_envs, 1]
self.cabinet_open_target_gpos: # [num_envs, 1]
self.cabinet_close_target_gpos: # [num_envs, 1]

class URlOeShadowHand (Agent) :

self.robot.get_gpos () # [num_envs, DOF]
self.robot.get_qgvel () : # [num_envs, DOF]
self.tip_links : List[Link] # fingertips

self.palm _link : Link # palm link

23

self.tip_poses: # [num_envs, num_tipsx7]
Contact impulse utilities (tip-based):
- get_fsr_impulse () [num_envs, num_tips, 3]
- get_fsr_obj_impulse(obj: Actor) [num_envs, num_tips, 3]
Contact force utilities (force = impulse / dt):
- get_fsr_force() [num_envs, num_tips, 3]
- get_fsr_obj_force(obj: Actor) [num_envs, num_tips, 3]
- get_hand_group_obj_mean_force (obj: Actor) [num_envs, 6, 1]
group order: ["R , nEFM , "mE" , nfn , LA RSl , "palm"] 2
each entry is mean |F| per group on self.device

class Actor:
self.pose : Pose
self.pose.p # [num_envs, 3]
self.pose.q # [num_envs, 4]
self.linear_velocity # [num_envs, 3]
self.angular_velocity # [num_envs, 3]

class Articulation:
self.max_dof : int
self.get_gpos () # [num_envs, max_dof]
self.get_qgvel () # [num_envs, max_dof]
self.get_net_contact_impulses (link_names: Union[List([str],
Tuple[str]]) # [num_envs, L, 3]
self.get_net_contact_forces (link_names: Union[List[str],
Tuple[str]]) # [num_envs, L, 3]

class Link:
self.joint : ArticulationdJoint
self.pose : Pose # [num_envs, 7]
self.pose.p: # [num_envs, 3]
self.pose.q # [num_envs, 4]
self.linear_velocity # [num_envs, 3]
self.angular_velocity # [num_envs, 3]

class ArticulationJoint:
self.qgpos : # [num_envs]
self.qvel : # [num_envs]
self.limits : # [num_envs, 2], [low, high]

Device & Shape Requirements:

 device = self.device

» Keep batch dimension even for single-env runs: [1, D]

To promote efficient and clean code generation, we provide the model with a library of common,
vectorized code functions. The Useful Patterns Prompt (Prompt B.2) offers canonical implementa-
tions for recurring calculations, such as computing distances or orientation errors. This guides the
LLM to adopt efficient, vectorized solutions over less performant alternatives, such as iterating over
the environment batch with for-loops.

Useful Patterns Prompt

Useful Vectorized Patterns:

1. Distance Calculation:

24

dist = torch.linalg.norm(posl - pos2, dim=-1) # [num_envs]
2. Fingertip Positions:

tip_pos = self.agent.tip_poses.reshape (self.num_envs, -1, 7)
[:) =, :3]

3. Orientation Error:

dot (g_cur * g_goal).sum(dim=-1) .abs () .clamp (
le-8, 1 - le-8)
ang = 2 x torch.arccos (dot)

4. Contact Force Measurement:

gf = self.agent.get_hand_group_obj_mean_force (obj)
thumb_mean_force = gfl[:, 0, 0] # [num_envs]

The Function Generation Prompt (Prompt B.2) defines the high-level guidelines and strict output
specifications for the three target functions. It mandates specific function signatures, input/output
types, and critical requirements, such as the need for smooth reward signals and the exclusive nature
of ”success” and “fail” conditions in the evaluation logic.

Function Generation Prompt

Task Implementation Guidelines:

* Rewards: Can be staged (approach/manipulate/place), smoothed, weighted

* Hard Constraints: Do NOT only reward success predicates; rewards should optimize phe-
nomena

* Computations: Keep lightweight and deterministic
Mandatory Function Specifications:

1. compute_dense_reward(self, obs, action, info)
 Input: obs (observation), action (tensor), info (dict)

* Output: torch.Tensor of shape [num_envs] on self.device

* Requirements:

Read only from environment members (do not use obs)

Combine smooth approach/manipulation signals

Maintain and update caches safely (self._obj_init_z, self._qpos_base, etc.)
Include W&B logging for reward components

2. evaluate(self)

* Qutput: dict with ’success” and “fail” boolean tensors of shape [num_envs]

Critical Requirements:

— MUST return both ’success” and “fail” keys
Enforce exclusivity: success = success & (fail)
Cache baselines once per episode

— Include W&B logging for evaluation metrics

3. _get_obs_extra(self, info)
* Qutput: dict of tensors with shape [num_envs, D]
* Requirements: Provide compact, task-relevant features on self.device

Output Format:

25

def compute_dense_reward(self, obs, action, info):
[Implementation with proper vectorization and device]
return reward

def evaluate (self) :
[Implementation with success/failure criterial
return {"success": success, "fail": fail}

def _get_obs_extra(self, info):
[Implementation of task-relevant features]
return obs_extra

To provide task-specific context, the Sub-Guidance Prompt (Prompt B.2) is used. It contains the
environment’s YAML configuration, a natural language description of both the full task and the
current learning stage, and specifies any active movement constraints (e.g., freezing the arm while
the hand learns). This allows the LLM to tailor the generated functions to the specific requirements
of the current training phase.

Substage Guidance Prompt

Movement Constraints (Joint Freezing):

* control_joint="arm’: Only UR10e arm moves; ShadowHand fingers frozen
* control_joint="hand’: Only ShadowHand hand moves; UR10e arm frozen
* control_joint="both’: Both arm and hand movable (full pipeline)

* control_joint="three_finger’: Only thumb, index, middle fingers movable

* control_joint="arm_two_finger’: Arm + thumb and middle fingers movable
* control_joint="lift_inspire’: UR10e_wrist_1 + All fingers movable(like inspire hand)
Environment Configuration:

{env_yaml}

Task Instructions:

* Current Stage: {current_stage_instruction }

* Full Task: {full_task_instruction}

* Guidance: Optimize for current stage; use full task for context
Implementation Strategy:

1. Phase 1 - Task Understanding:

* Analyze task semantics and available signals
» Derive stage-specific goals from current instruction
 Align thresholds with full task instruction when applicable

2. Phase 2 - Function Implementation:

* Implement THREE functions with strict signatures
* Follow success/failure criteria based on task type

» Ensure proper tensor shapes and device placement
¢ Include comprehensive logging

Code Quality Standards:

* Vectorized operations (no for-loops over environments)
* Proper device management (all tensors on self.device)
* Safe caching with shape validation

* Clear reward component separation

» Comprehensive failure conditions

26

For iterative development and refinement, we incorporate two additional prompts. The Previous
Function Analysis Prompt (Prompt B.2) provides the LLM with the previously generated code and
corresponding human feedback, enabling it to correct errors or improve logic in the next generation
cycle.

Previous Function Analysis Prompt

Previous Implementation Analysis
Here is the previous implementation of the three functions:
Previous compute_dense _reward:

{previous_reward_code}

Previous evaluate:

{previous_evaluate_code}

Previous _get_obs_extra:
{previous_obs_extra_code}

Feedback on Previous Implementation:
{human_feedback}

Update Requirements:

* Analyze the feedback and identify improvement areas
» Update the three functions based on current instruction and feedback
* Maintain function signatures and output formats

* Ensure backward compatibility where appropriate

Finally, to ensure continuity in multi-stage tasks, the Previous Stage Success Specification Prompt
(Prompt B.2) provides the success criteria from the preceding stage. This allows the model to build
upon previously learned behaviors, for example, by ensuring the current stage’s initial conditions
align with the successful completion of the prior stage.

Previous Stage Success Specification

PREVIOUS STAGE SUCCESS SPECIFICATION

* Source Type: prev_source_type

e Content:
{prev_success_text}
Guidance:

* If source type is motion_planning YAML: derive success definition from configured toler-
ances/goals

* If source type is evaluate.py: align metric names and thresholds with prior logic
» Keep vectorized outputs with shape [num_envs]

B.3 TRAINING AND NETWORK ARCHITECTURE DETAILS

This section outlines the specific hyperparameters and network architecture used for training the
reinforcement learning agent. All models were trained using the Proximal Policy Optimization
(PPO) algorithm. The implementation details are provided to ensure full reproducibility of our
results.

We used a consistent set of PPO hyperparameters and a standardized network architecture across all
training runs. The values, detailed in Table 2, were selected based on common practices in dexterous
manipulation literature and preliminary experiments to ensure stable and efficient learning.

27

Table 2: PPO Hyperparameters and Network Architecture.

Parameter Value
num-envs 1024
Learning Rate 3x107*
Discount Factor 0.998
GAE Parameter 0.95
Update Epochs 4
Clipping Coefficient 0.2
Entropy Coefficient 0.01

Value Function Coefficient

0.75

Hidden Layers
Activation Function

[1024, 1024, 512]
ReLU (Hidden), Linear (Output)

28

	Introduction
	Related Works
	Foundation Models for Robotics Learning
	Generative Simulation
	Dexterous Hand Manipulation

	GenDexHand
	Proposal and Generation
	MLLM Refinement
	Trajectory Generation

	Experiment
	Experimental Setup
	Task Quality of GenDexHand
	Efficiency of policy learning

	Conclusion and Discussion
	Ethics statement
	Reproducibility statement
	The Use of Large Language Models
	Appendix
	Detail of Task Generation
	Detail of Policy Generation
	Training and Network Architecture Details

